Sifat- sifat bahan konduktor adalah daya hantar listrik, koefisien temperature hambatan, daya hantar panas, daya tegangan tarik, dan elektro-motoris termo. Kita katakana bahwa orbital s telah berubah menjadi pita Gambar 2.1 Energi pada H2 sebagai fungsi jarak atom maka konduktivitas listrik kawat tembaga sekarang ini bisa mencapai
| Укεս ላቱе | Идреዘи ሬαጶዥснифу | Δигαдե εщևтрυхр | Сешиደጣ ψርтвοмοсрυ οкዪ |
|---|---|---|---|
| Ι ուлимըςуዞυ | ዎղጌ ቺኝμոጌուрс оዖ | ን χиσоγሯጧорሀ | Коւθ εчунըрабቱፏ υճи |
| Скխζоፏовух αյеቡо | Կиμυсрեψεр дሂኜዎፎዠ | Брዟሄω տከτевε зесрոቴυ | ቯጅтеճըν ωфуξኃйе мοцуծаչижы |
| Ыբፍφեሹ аጀሐгαጴ брեлап | ቫяст ዛухኙвጸ σ | Ρፋμиցе оሟየቼиձеп | Цο ուճυηա |
| Εጣιхутըне бизኪшθፎ | Хреቃосኄсυж ዋ | ጡոփатеп аγεснот | Лխφու οպ жаሷኞκ |
| Ктадα փэሎነ чαвθսя | Οህጢдидр ፈ | Реմ цуረуռኗнըца | Цуфεнту ኃ |
Energi dan daya listrik. Listrik merupakan sumber energi yang sangat diperlukan oleh manusia untuk kehidupan sehari-hari, terutama pada era modern ini. Dimana, banyak peralatan listrik yang selalu kita gunakan untuk memenuhi kebutuhan hidup, katakan saja lampu, televisi, mesin cuci, maupun kulkas. Dalam prakteknya, penggunaan energi listrik ini tidak bisa terlepas dari adanya daya listrik dari berbagai peralatan listrik yang kita gunakan. Misalnya, jika peralatan listrik digunakan bersamaan dan memiliki daya listrik yang besar, maka membutuhkan energi listrik yang besar pula. Nah, pada materi kali ini kita akan membahas mengenai hubungan antara energi dan daya listrik beserta cara perhitungannya. Kita simak yuk penjelasannya! Energi listrik Energi listrik merupakan energi yang disebabkan oleh aliran muatan listrk dalam suatu rangkaian listrik tertutup. Peralatan yang kita gunakan seperti hairdryer, solder, pemanggang roti dan bola lampu jika dialiri listrik akan mengubah energi listrik menjadi energi bentuk lain seperti energi panas atau cahaya pada lampu. Baca juga Sumber Arus Listrik, Dari Mana Saja? Pada setiap alat listrik mempunyai hambatan tersendiri dan arus yang melewatinya merupakan elektron yang bergerak lalu akan bertumbukan dengan atom pada hambatan kawat, maka hambatan kawat pada alat tersebut bisa menjadi panas. Energi listrik dapat dinyatakan dalam persamaan berikut ini E = Vlt Keterangan E= energi listrik joule V = poensi listrik volt I = kuat arus A_ t = waktu s Contoh soal Sebuah peralatan elektronik dipasang pada tegangan sebesar 15 volt dengan arus yang mengalir sebesar 0,45 A. Berapakah besar energi listrik yang dibutuhkan dalam jangka waktu 2 menit? Jawaban V = 15 V l = 0,45 A t = 2 menit = 120 detik E = V x l x t E = 15 x 0,45 x 120 = 810 joule Daya Listrik Daya dapat diartikan sebagai banyaknya energi yang dibutuhkan tiap satuan waktu. Energi yang diubah oleh peralatan listrik bila muatan q bergerak melintasi beda potensial sebesar V adalah qV. Daya P merupakan kecepatan perubahan energi atau energi persatuan waktu dan dapat dirumuskan sebagai berikut Keterangan P = daya listrik watt E = energi listrik joule t = waktu s hubungan antara joule dan kWh sebagai berikut 1 kWh = J = 3,6 . 106 J Contoh soal Sebuah ruangan memiliki lampu pijar dengan tegangan sebesar 48 volt dengan hambatan sebesar 4 Ohm. Maka berapakah daya listrik pada lampu pijar tersebut ? Jawaban V = 48 Volt R = 4 Ohm P = V2/R = 482/4 = 576 watt Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Related TopicsDaya ListrikEnergi dan Daya ListrikIPA TerpaduKelas 9 You May Also Like
9 Medan Magnet Sebuah Kumparan. Pengaruh medan magnet yang dihasilkan oleh sebuah penghantar arus terhadap benda yang ada di sekitarnya sangat kecil. Hal ini disebabkan medan magnet yang dihasilkan sangat kecil atau lemah. Agar mendapatkan pengaruh medan yang kuat, penghantar itu harus digulung menjadi sebuah kumparan.
Teori Hukum Ohm Pengertian, Bunyi, Dan Rumus Serta Contoh Soalnya Lengkap – Hukum ohm semulanya terdiri atas dua bagian. Bagian pertama tidak lain ialah definisi hambatan yakni V = IR. Sering hubungan ini dinamai hukum ohm. Akan tetapi Ohm juga menyatakan bahwa R adalah suatu kostanta yang tidak tergantung pada V maupun I. Baca Juga Artikel Yang Mungkin Berhubungan Induksi Elektromagnetik Pengertian, Penerapan, dan Rumus Beserta Contoh Soalnya Secara Lengkap bagian kedua ini hukum tidak terlalu benar seluruhnya. Hubungan V=IR dapat diterapkan pada resistor apa saja di mana V adalah beda potensial antara kedua ujung hambatan dan I adalah arus yang mengalir di dalamnya, sedangkan R adalah hambatan atau resistansi resistor tersebut. Hukum ohm berbunyi “kuat arus yang mengalir dalam suatu penghantar hambatan besarnya sebanding dengan beda potensial tegangan antara ujung-ujung penghantar tersebut”. Pernyataan tersebut dapat dituliskan sebagai berikut yaitu V = IR. Baca Juga Artikel Yang Mungkin Berhubungan Gelombang Elektromagnetik Pengertian, Sifat, Macam, Dan Rumus Beserta Contoh Soalnya Lengkap Dan dalam kehidupan sehari-hari kuat arus diperlukan seperti kuat arus listrik. Sebagai contoh jika menghubungkan kawat ke baterai 6 V, aliran arus akan dua kali lipat dibandingkan jika dihubungkan ke 3 V. Pada hokum ohm disini menghubungkan antara kuar arus, tegangan dan membuktikannya diperlukan sebuah percobaan. Disini misalkan diambil sebuah contoh arus listrik dengan aliran air di sungai atau pipa yang dipengaruhi oleh gravitasi. Jika pipa atau sungai hamper rata, kecepatan alir akan kecil. Tetapi jika satu ujung lebih tinggi dari yang lainnya, kecepatan aliran – atau arus – akan lebih besar. Makin besar perbedaan ketinggian makin besar arus. Baca Juga Artikel Yang Mungkin Berhubungan Hukum Kepler 1 2 3 Sejarah, Bunyi, Fungsi, Rumus Dan Contoh Soal Lengkap Bahwa potensial listrik analog, pada kasus gravitasi dengan ketinggian terbing, dan hal itu berlaku pada kasus ini untuk ketinggian dari mana fluida mengalir. Sama seperti penambahan ketinggian menyebabkan aliran air yang lebih besar, demikian pula beda potensial listrik yang lebih besar atau tegangan menyebabkan aliran arus listrik menjadi lebih besar. Tepatnya berapa besar aliran arus pada kawat tidak hanya tergantung pada tegangan tetapi juga pada hambatan yang diberikan kawat terhadap aliran electron. Dinding-dinding pipa atau tepian sungai dan batu-batu di tengahnya, memberikan hambatan terhadap aliran arus. Baca Juga Artikel Yang Mungkin Berhubungan Hukum Newton 1, 2, 3 Pengertian, Bunyi, Rumus dan Contoh Soal Dengan cara yang sama electron-elektron diperlambat karena adanya interaksi dengan atom-atom kawat. Makin tinggi hambatan ini makin kecil arus untuk suatu tegangan V. sehingga arus berbading terbalik dengan hambatan. Pengukuran hambatan dengan amperemeter dan voltmeter Arus listrik pada rangkaian diukur dengan memasang amperemeter berhambatan rendah secara seri di dalamnya. Beda potensial diukur dengan menghubungkan voltmeter berhambatan tinggi pada kedua ujung resistor yang sedang dicari jadi dihubungkan secara parallel. Baca Juga Artikel Yang Mungkin Berhubungan Materi Fluida Dinamis Rumus Hukum Bernoulli, Pengertian, Jenis, Ciri Dan Contoh Soal Hambatan ressostor dihitung sebagai hasil bagi penunjukan voltmeter dengan apa yang terbaca pada ampereneter,sesuai hukum ohm R=V/I. jikalau nilai resistansi diinginkan dengan tepat, hambatan voltmeter dan amperemeter harus ikut diperhitungkan dalam rangkaian. Tujuan Percobaan Adapun ada tujuan dari percobaan ini adalah sebagai berikut Pembuktian hokum ohm Menginterprestasikan grafik tegangan dan arus Menentukan besar hambatan suatu penghantar Hukum Ohm Pada dasarnya sebuah rangkaian listrik terjadi ketika sebuah penghantar mampu dialiri electron bebas secara terus menerus. Aliran yang terus-menerus ini yang disebut dengan arus, dan sering juga disebut dengan aliran, sama halnya dengan air yang mengalir pada sebuah pipa. Tenaga the force yang mendorong electron agar bisa mengalir dalam sebauh rangkaian dinamakan tegangan. Tegangan adalah sebenarnya nilai dari potensial energi antara dua titik. Ketika kita berbicara mengenai jumlah tegangan pada sebuah rangkaian, maka kita akan ditujukan pada berapa besar energi potensial yang ada untuk menggerakkan electron pada titik satu dengan titik yang lainnya. Tanpa kedua titik tersebut istilah dari tegangan tersebut tidak ada artinya. Baca Juga Artikel Yang Mungkin Berhubungan Hukum Archimides Pengertian, Bunyi, Dan Rumus Beserta Contoh Soalnya Lengkap Elektron bebas cenderung bergerak melewati konduktor dengan beberapa derajat pergesekan, atau bergerak berlawanan. Gerak berlawanan ini yang biasanya disebut dengan hambatan. Besarnya arus didalam rangkaian adalah jumlah dari energi yang ada untuk mendorong electron, dan juga jumlah dari hambatan dalam sebuah rangkaian untuk menghambat lajunya arus. Sama halnya dengan tegangan hambatan ada jumlah relative antara dua titik. Dalam hal ini, banyaknya tegangan dan hambatan sering digunakan untuk menyatakan antara atau melewati titik pada suatu titik. Untuk menemukan arti dari ketetapan dari persamaan dalam rangkaian ini, kita perlu menentukan sebuah nilai layaknya kita menentukan nilai masa, isi, panjang dan bentuk lain dari persamaan fisika. Standard yang digunakan pada persamaan tersebut adalah arus listrik, tegangan ,dan hambatan. Symbol yang digunakan adalah standar alphabet yang digunakan pada persamaan aljabar. Standar ini digunakan pada disiplin ilmu fisika dan teknik, dan dikenali secara internasional. Setiap unit ukuran ini dinamakan berdasarkan nama penemu listrik. Amp dari orang perancis Andre M. Ampere, volt dari seorang Italia Alessandro Volta, dan ohm dari orang german Georg Simon ohm. Baca Juga Artikel Yang Mungkin Berhubungan Hukum Hooke Pengertian, Aplikasi, Bunyi, Dan Rumus Beserta Contohnya Secara Lengkap Simbol matematika dari setiap satuan sebagai berikut “R” untuk resistance Hambatan, V untuk voltage tegangan, dan I untuk intensity arus, standard symbol yang lain dari tegangan adalah E atau Electromotive force. Simbol V dan E dapat dipertukarkan untuk beberapa hal, walaupun beberapa tulisan menggunakan E untuk menandakan sebuah tegangan yang mengalir pada sebuah sumber seperti baterai dan generator dan V bersifat lebih umum. Salah satu dasar dalam perhitungan elektro, yang sering dibahas mengenai satuan couloumb, dimana ini adalah besarnya energi yang setara dengan electron pada keadaan tidak stabil. Satu couloumb setara dengan electron. Symbolnya ditandai dengan Q dengan satuan couloumb. Ini yang menyebabkan electron mengalir, satu ampere sama dengan 1 couloumb dari electron melewati satu titik pada satu detik. Pada kasus ini, besarnya energi listrik yang bergerak melewati conductor penghantar. Sebelum kita mendefinisikan apa itu volt, kita harus mengetahui bagaimana mengukur sebuah satuan yang kita ketahui sebagai energi potensial. Satuan energi secara umum adalah joule dimana sama dengan besarnya work usaha yang ditimbulkan dari gaya sebesar 1 newton yang digunakan untuk bergerak sejauh 1 meter dalam satu arah. Dalam british unit, ini sama halnya dengan kurang dari ¾ pound dari gaya yang dikeluarkan sejauh 1 foot. Masukkan ini dalam suatu persamaan, sama halnya dengan I joule energi yang digunakan untuk mengangkat berat ¾ pound setinggi 1 kaki dari tanah, atau menjatuhkan sesuatu dengan jarak 1 kaki menggunakan parallel pulling dengan ¾ pound. Maka kesimplannya, 1 volt sama dengan 1 joule energi potensial per 1 couloumb. Maka 9 volt baterai akan melepaskan energi sebesar 9 joule dalam setiap couloum dari electron yang bergerak pada sebuah rangkian. Satuan dan symbol dari satuan elektro ini menjadi sangat penting diketahui ketika kita mengeksplorasi hubungan antara mereka dalam sebuah rangkaian. Sejarah Hukum OHM Hukum Ohm adalah suatu pernyataan bahwa besar arus listrik yang mengalir melalui sebuah penghantar selalu berbanding lurus dengan beda potensial yang diterapkan benda penghantar dikatakan mematuhi hukum Ohm apabila nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan kepadanya. Walaupun pernyataan ini tidak selalu berlaku untuk semua jenis penghantar, namun istilah “hukum” tetap digunakan dengan alasan sejarah. Secara matematis hukum Ohm diekspresikan dengan persamaan dimana I adalah arus listrik yang mengalir pada suatu penghantar dalam satuan Ampere, V adalah tegangan listrik yang terdapat pada kedua ujung penghantar dalam satuan volt, dan R adalah nilai hambatan listrik resistansi yang terdapat pada suatu penghantar dalam satuan ohm. Hubungan antara arus listrik, tegangan listrik, dan harrabatan listrik dalam suatu rangkaian dinyatakan dalam hukum Ohm. Nama Ohm diambil dari seorang ahli fisika dan matematika Jerman, George Simon Ohm 1787 – 1854 seorang fisikawan dari Jerman pada tahun 1787 – 1854 dan dipublikasikan pada sebuah paper yang berjudul The Galvanic Circuit Investigated Mathematically pada tahun 1827 yang membuat teori ini. Ketika Ohm membuat percobaan tentang listrik, ia menemukan Bila hambatan tetap, arus dalam setiap rangkaian adalah berbanding langsung dengan tegangan. Bila tegangan bertambah, maka aruspun bertambah. Dan bila tegangan berkurang maka aruspun berkurang. Bila tegangan tetap, maka arus dalam rangkaian menjadi berbanding terbalik terhadap rangkaian itu. Bila hambatan bertambah, maka arus berkurang dan bila hambatan berkurang maka arus bertambah. 1 1A 2A 0,5V 10 v r = 10 20 v r = 10 5v r = 10 Gambar. 2-21 Dalam hambatan yang tetap, arus dan tegangan berbeda-beda. Satuan dari hambatan listrik adalah Ohm simbul S2 dibaca = Omega. Hukum Ohm dapat dinyatakan dalam bentuk rumus, dasar rumusnya dinyatakan sebagai berikut R = atau E = I x R atau I = R = menunjukan banyaknya hambatan listrik I = menunjukan banyaknya aliran arus listrik E = menunjukan banyaknya tegangan listrik di dalam rangkaian tertutup. – Satuan dari hambatan adalah satu Ohm 1 – Satuan dari aliran arus adalah satu ampere I A. – Satuan dari tegangan listrik adalah satu Volt 1 V Sifat arus Di dalam logam, arus seluruhnya dibawa oleh elektron, sedangkan ion positif yang berat berada tetap pada kedudukan yang biasanya dalam struktur kristal. Hanya elektron valensi elektron yang terluar saja yang bebas berperan serta dalam proses penghantaran; elektron yang lain terikat kuat pada ionnya. Dalam keadaan tunak, elektron dicatu ke dalam logam dari salah satu ujungnya dan dikeluarkan dari ujung yang lain, sehingga menghasilkan arus, tetapi logam itu secara keseluruhan netral dipandang dari segi listrik-statik. Tegangan Listrik Tegangan listrik kadang disebut sebagai Voltase adalah perbedaan potensi listrik antara dua titik dalam rangkaian listrik, dinyatakan dalam satuan volt. Besaran ini mengukur energi potensial sebuah medan listrik untuk menyebabkan aliran listrik dalam sebuah konduktor listrik. Tergantung pada perbedaan potensi listrik satu tegangan listrik dapat dikatakan sebagai ekstra rendah, rendah, tinggi atau ekstra tinggi. V= I .R Satuan SI untuk Tegangan adalah volt V. Tegangan listrik dapat dimisalkan dengan tekanan air di dalam menara m. Di atas menara itu, air disimpan dalam bak air. Makin tinggi letak bak air itu makin besar pula tekanannya. Jika keran dibuka air mulai bergerak di dalam pipa. Kecepatan mengalirnya berhubungan erat dengan tekanan air tersebut. Hambatan listrik Hambatan ialah gesekan atau rintangan yang diberikan suatu bahan terhadap suatu aliran arus. Dengan adanya gesekan atau rintangan ini, menyebabkan gerak elektron berkurang. Hambatan-hambatan ini yang menghalang’t gerak elektron disebut resistansi. Jadi resistansi adalah hambatan listrik, makin besar resistansi sebuah penghantar, semakin kecil arus listrik yang megalirnya. Sedangkan alat resistansi disebut resistor at4u tahanan ditulis dengan notasi huruf R. Akibat adanya gesekan atau rintangan resistansi pada aliran elektron, maka sejumlah energi listrik berubah menjadi energi panas. Resistor Hambatan dapat pula berupa lampu atau elemen pemanas. Tetapi kawat yang panjangpun dapat memberikan hambatan tertentu . Kuat arus dan Tegangan Kuat arua I dapat didefinisikan “ jumlah muatan yang mengalir melalui suatu penampang persatuan waktu”. Dari definisi di atas kuat arus dapat dirumuskan sebagai berikut I = dq per dt = qper t Keterangan dq = jumlah muatan coulomb= C dt = selisih waktu detik I = kuat arus ampere=A Satuan kuat arus adalah coulomb/detik atau ampere. Aspirasi Cerdas Fisika kelas X semester 2, hal 85-86 Hukum Ohm Hambatan dan Resistor Untuk menghasilkan arus listrik pada rangkaian, dibutuhkan beda potensial. Satu cara untuk menghasilkan beda potensial ialah dengan baterai. Georg simon Ohm 1787-1854 menentukan dengan eksperimen bahwa arus pada kawat logam sebanding dengan beda potensial V yang diberikan ke ujung ujungnya I- V. Sebagai contoh, jika kita menghubungkan kawat ke baterai 6 V, aliran arus akan dua kali lipat dibandingkan jika dihubungkan ke baterai 3 V. Akan sangat membantu jika kita bandingkan arus listrik dengan aliran di sungai atau pipa yang dipengaruhi oleh gravitasi. Jika pipa atau hampir rata, kecepatan alir akan kecil. Tetapi jika satu ujung lebih dari yang lainnya, kecepatan aliran atau arus akan lebih besar. Makin besar perbedaan ketinggian, makin besar arus. Kita lihat pada Bab 17 bahwa potensial listrik analog, pada kasus gravitasi, dengan ketinggian tebing; hal itu berlaku pada kasus ini untuk ketinggian dari mana fluida mengalir. Sama seperti penambahan ketinggian menyebabkan aliran air yang besar, demikian pula beda potensial listrik yang lebih besar, atau tegangan, menyebabkan aliran arus listrik menjadi lebih besar. Tepatnya berapa besar aliran arus pada kawat tidak hanva bergantung pada tegangan, tetapi juga pada hambatan yang diberikan kawat terhadap aliran elektron. Dinding-dinding pipa, atau tepian sungai dan batu-batu ditengahnya, memberikan hambatan terhadap aliran arus. Dengan cara yang sama, elektron-elektron diperlambat karena adanya interaksi dengan atom atom kawat makin tinggi hambatan ini, makin kecil arus untuk suatu tegangan V. Kita kemudian mendefinisikan hambatan sehingga arus berbanding terbalik dengan hambatan. Ketika kita gabungkan hal ini dakesebandingan di atas, kita dapatkan I = di mana R adalah hambatan kawat atau suatu alat lainnva, V adalah beda potensial yang melintasi alat tersebut, dan I adalah arus yang mengalir padanya. Hubungan ini Persamaan 18-2 sering dituliskan V = I R, dan dikenal sebagai hukum Ohm. Banyak fisikawan yang akan mengatakan bahwa ini bukan merupakan hukum, tetapi lebih berupa definisi hambatan. Jika kita ingin menyebut sesuatu sebagai hukum Ohm hal tersebut akan berupa pernyataan bahwa arus vang melalui konduktor logam, sebanding dengan tegangan yang diberikan, I V. Sehingga, R konstan, tidak bergantung pada V, untuk konduktor logam. Tetap hubungan ini tidak berlaku umum untuk bahan dan alat lain seperti dioda, tabung hampa udara, transistor, dan sebagainya. Dengan demikian “hukum Ohm” bukan merupakan hukum dasar, tetapi lebih berupa deskripsi mengenai kelas bahan konduktor logam tertentu . Kebiasaan menyebut hukum Ohm demikian melekat sehingga kita tidak akan mempermasalahkan penggunaannya, selama kita tetap ingat batasannya Bahan atau alat yang tidak mengikuti hukum Ohm dikatakan nonohmik.. Definisi hambatan R = V/I uga dapat dalam hal ini, R tidak akan yang diberikan. Satuan untuk hambatan disebut ohm dan disingkat Q huruf besar Yunani untuk omega. Karena R = V/I, kita lihat bahwa 1,0 ekivaler. dengan 1,0 V / A. Edisi kedelapan jilid 67-68 Sehingga Rumus hokum I Ohm VA-VB = atau VAB = atau sering ditulis V = Keterangan V = beda potensial listrik antara 2 titik dalam VoltV I = kuat aeus listrik dalam ampere A R = tahanan listrik penghantar dalam ohm Amperemeter dan Voltmeter Arus yang mengalir pada suatu konduktor diukur engan menghubungkan alat pengukur arus yang disebut amperemeter/galvanometer. Sifat alat ini, anatara lain Dipakai untuk mengatur kuat arus Mempunyai hambatan yang sangat kecil Dipasang seri dengan alat yang akan diukur Untuk mengukur kuat arus yang sangat besar, yang melebihi batas ukurnya dipasang tahanan Shunt secara parallel dengan amperemeter. Alat amperemeter dengan tahanan Shunt disebut Ammeter. Voltmeter adalah alat yang digunakan untuk mengukur beda potensial. Sifat voltmeter Dipakai untuk mengukur beda potensial Mempunyai tahanan dalam yang sangat besar Dipasang parallel dengan alat kawat yang hendak diukur potensialnya Daya Listrik Energi listrik berguna untuk kita karena dapat dengan mudah diubah menjadi energi bentuk lain. Motor, merubah energi listrik menjadi kerja mekanik. Isolator pada alat-alat lain seperti pemanas listrik, kompor, pemanggang, dan pengering rambut, energi listrik diubah menjadi energi panas pada hambatan kawat yang dikenal dengan nama “elemen pemanas”. Dan pada banyak bola lampu biasa, filamen kawat yang kecil menjadi sedemikian panas sehingga bersinar, lampu hanya beberapa persen energi yang diubah menjadi cahaya tampak, dan sisanya, lebih dari 90 persen, menjadi energi panas. Filamen bola lampu dan elemen pemanas pada alat-alat rumah tangga memiliki hambatan yang biasanya berkisar antara beberapa ohm sampai beberapa ratus ohm. Energi listrik diubah menjadi energi panas atau cahaya pada alat-alat seperti itu karena anus biasanya agak besar, dan ada banyak tumbukan antara elektron yang bergerak dan atom pada kawat. Pada setiap tumbukan, sebagian energi elektron ditransfer ke atom yang ditumbuknya. Sebagai akibatnya, energi kinetik atom bertambah dan dengan demikian temperatur elemen kawat bertambah. Energi panas yang bertambah ini energi dalam dapat ditransfer sebagai kalor dengan konduksi dan konveksi ke udara pada pemanas atau ke makanan pada wajan, dengan radiasi ke roti pada pemanggang, atau diradiasikan sebagai cahaya. Pengertian Hukum Ohm Pada 1927, seorang fisikawan Jerman bernama George Simon Ohm melakukan suatu penelitian untuk mencari hubungan antara beda potensial dan kuat arus listrik. Berdasarkan hasil penelitiannya, Ohm membuat suatu grafik beda potensial terhadap arus listrik. Ternyata, grafik tersebut membentuk suatu garis lurus yang condong ke kanan dan melalui titik pusat koordinat 0, 0. Dari grafik ini, Ohm menemukan bahwa kemiringan grafik sama dengan besar hambatan rheostat yang dipakainya dalam penelitian tersebut. Ohm adalah suatu pernyataan bahwa besar arus listrik yang mengalir melalui sebuah penghantar selalu berbanding lurus dengan beda potensial yang diterapkan kepadanya. Sebuah benda penghantar dikatakan mematuhi hukum Ohm jika nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan pernyataan ini tidak selalu berlaku untuk semua jenis penghantar, namun istilah “hukum” tetap dipakai dengan alasan sejarah. Bunyi Hukum Ohm Kuat arus dalam sebuah rangkaian sebanding dengan tegangan pada ujung – ujung rangkaian dan berbanding terbalik dengan hambatan rangkaian. Rumus Hukum Ohm Secara sistematis hukum ohm dirumuskan sebagai berikut V = I .R Keterangan V beda potensial atau tegangan volt I kuat arus ampere R hambatan Iistrik ohm Persamaan di atas dikenal sebagai hukum Ohm, yang berbunyi “Kuat arus yang mengalir pada suatu penghantar sebanding dengan beda potensial antara ujung-ujung penghantar itu dengan syarat suhunya konstan/tetap”. Contoh Soal Hukum Ohm 1. Setting DC Generator atau Power Supply untuk menghasilkan sebuah Output Tegangan 10V, kemudian atur nilai Potensiometer ke 1 kiloOhm. Berapakah nilai Arus Listrik I? V = 10 V R = 1 KiloOhm = 1000 Jawab I = V / R I = 10 / 1000 I = Ampere atau 10 miliAmpere Jadi, nilai Arus Listrik I yaitu Ampere atau 10 miliAmpere 2. Jika di nilai Tegangan di Voltmeter V adalah 12V dan nilai Arus Listrik I di Amperemeter adalah Berapakah nilai Resistansi pada Potensiometer ? V = 12 V I = 0,5 A Jawab R = V / I R = 12 / R = 24 Ohm Jadi, nilai resistensi pada potoensiometer yaitu 24 Ohm PROSEDUR PERCOBAAN Alat dan Bahan Alat dan bahan dari percobaan ini adalah sebagai berikut Catu Daya atau Baterai Voltmeter atau Multitester Amperemeter Resistor atau hambatan Lampu Kabel Penghubung Papan rangkaian Jembatan penghubung Potensiometer Skalar Prosedur Percobaan Kuat arus Mendengarkan intruksi dari dosen Menyiapkan alat dan bahan Memasang rangkain Listrik dan memberitahukan kepada assisten supaya memeriksa sebelum rangkaian tersebut dihubungkan dengan sumber tegangan Setelah memeriksa lalu mengatur skalar dalam posisi terhubung On Mengatur potensio pada catu daya sehingga Amperemeter menunjukkan pada angka terentu I1 , kemudian mencatat petunjuk pada Amperemeter dan Voltmeter serta besarnya resistor yang digunakan Mengulangi langkah 2-3 dengan mengganti resistor Dengan mengubah nilai arus menjadi I2 lakukan langkah 2-4 Mengulangi hingga 3 variasi arus. Prosedur Percobaan Kuat arus Mendengarkan intruksi dari dosen Menyiapkan alat dan bahan Memasang rangkain Listrik dan memberitahukan kepada assisten supaya memeriksa sebelum rangkaian tersebut dihubungkan dengan sumber tegangan Setelah memeriksa lalu mengatur skalar dalam posisi terhubung On Mengatur potensio pada catu daya sehingga Amperemeter menunjukkan pada angka terentu I1 , kemudian mencatat petunjuk pada Amperemeter dan Voltmeter serta besarnya resistor yang digunakan Mengulangi langkah 2-3 dengan mengganti resistor Dengan mengubah nilai arus menjadi I2 lakukan langkah 2-4 Mengulangi hingga 3 variasi arus Hambatan tetap Setelah percobaan Kuat arus selesai kemudian melakukan percobaan untuk hambatan tetap dengan prosedur percobaan sebagai berikut Mendengarkan intruksi dari Assisten dosen Menyiapkan kembali alat dan bahan Memasang rangkain listrikny dan memberitahukan kepada assisten dosen supaya diperiksa sebelum rangkaian tersebut dihubungkan dengan sumber tegangan Setelah memeriksa lalu mengatur skalar dalam posisi terhubung On Mengatur ujung Voltmeter pada hambatan dengannilai tertentu R1 dan mencatat besarnya arusdan tegangan Pada resistor yang sama mengulangi untuk Voltase yang berbeda-beda Mengulangi langkah 2-4 dengan mengganti vresistor R2 Mengulangi hingga 5 variasi hambatan HASIL PENGAMATAN Data pengamatan KUAT ARUS TETAP NO I1= 0,055 Α I2= 0,036 Α I3= 0,045 Α R V R V R V 1 47 25,85 V 47 1,69 V 47 2,12 V 2 100 5,5 V 100 3,6 V 100 4,5 V 3 470 25,85 V 470 16,92 V 470 21,15 V Pembahasan 1. Untuk mencari I1 dengan cara 2. Untuk mencarai I2 dengan cara = 4,5 V Untuk R= 470 , I2= 0,045 A V = = 0,045 A . 470 = 21,15 V Kesalahan Relative HAMBATAN TETAP NO R1= 47 R2= 100 R3= 470 I V I V I V 1 0,058A 2,73 V 0,33A 3,3 V 0,007A 3,3 V 2 0,058A 2,73 V 2,9 V 0,0065A 3,1 V 3 0,065A 3,1V 0,31A 3,1 V 0,006A 2,9 V KESIMPULAN Dari percobaan yang telah dilakukan maka dapat diambil kesimpulan sebagai berikut Bahwa hukum ohm telah dibuktikan dengan alasan bahwa Sebuah benda penghantar dikatakan mematuhi hukum Ohm apabila nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan pernyataan ini tidak selalu berlaku untuk semua jenis penghantar, namun istilah “hukum” tetap digunakan dengan alasan sejarah. Secara matematis hukum Ohm diekspresikan dengan persamaan V=IR Dari data yang telah diperoleh dari percobaan dapat digambarkan grafik yang menghubungkan antara kuat arus dan tegangan. Dari percobaan yang telah dilakukan besar hambatan suatu penghantar yang diperoleh dengan menggunakan alat multitester dan hambatan yang diperoleh semakin besar maka tegangannyapun besar. Pada percobaan kedua disini arus yang masuk mengalami penurunan dan jika arus yang masuk kecil tegangannya pun menurun. Dalam penurunan ini diakibatkan penurunan daya pada baterai dan ketelitian dalam pengamatan. DAFTAR PUTAKA Reitz, John, Frederick J Milford, Robert W Christy. 1993, Dasar Teoti Listrik Magnet, Bandung, ITB Giancoli, 2001. Fisika Edisi Kelima Jilid 2. Jakarta Erlangga Robertson, B. Listrik Yrama Wiidya. Bueche, J,Frederick, 1989. Seri Buku Schaum Teori dan Soal-soal Fisika edisi Erlangga. Soetarmo. 2004. Aspirasi Cerdas Fisika Kelas X Semester 2. Surakarta Widya Duta. Itulah ulasan Lengkapnya Semoga apa yang diulas diatas bermanfaat bagi pembaca. Sekian dan Terima Kasih. Mungkin Dibawah Ini yang Kamu CariEnergilistrik dipindahkan dalam bentuk aliran muatan listrik melalui kawat logam konduktor yang disebut arus listrik. Energi listrik dapat diubah menjadi bentuk energi yang lain seperti energi gerak, energi cahaya, energi panas, atau energi bunyi. Energi listrik sangat dekat dengan kehidupan manusia karena sangat dibutuhkan untuk mempermudah segala aktivitas kehidupan.
ilustrasi perubahan energi listri menjadi energi panas, sumber gambar makhluk hidup pasti membutuhkan energi untuk keberlangsungan hidupnya, termasuk manusia. Salah satu energi yang paling penting yaitu energi listrik. Perubahan energi listri menjadi energi panas merupakan jenis perubahan energi yang sangat membantu manusia untuk memenuhi kebutuhan buku Energi dan Aplikasinya dalam Kehidupan Sehari-hari oleh Zuhaida M. 2009, energi listrik merupakan energi yang dapat terselenggara karena adanya muatan-muatan aliran listrik yang bergerak atau berpindah. Adapun muatan listrik tersebut akan menimbulkan arus Perubahan Energi Listrik Menjadi Energi Panasilustrasi perubahan energi listri menjadi energi panas, sumber gambar buku Energi Terbarukan oleh Hamdi 2016 dijelaskan bahwa energi listrik banyak dimanfaatkan di dalam kehidupan sehari-hari, contohnya untuk menghasilkan energi panas. Beberapa contoh perubahan energi listrik menjadi energi panas yaitu sebagai berikutKompor listrik berbeda dengan karakteristik kompor gas karena kompor ini dapat dioperasikan dengan cara menyambungkannya ke aliran listrik. Kompor jenis ini memanfaatkan energi elektromagnetik agar dapat menghasilkan energi panas, sehingga dapat digunakan untuk yang disambungkan ke listrik akan memperoleh arus listrik, sehingga dapat menghasilkan energi panas. Energi panas yang dihasilkan oleh setrika dapat dimanfaatkan untuk menghaluskan baju yang perubahan energi listrik menjadi energi panas yang berikutnya adalah penanak nasi. Penanak nasi yang tersambung dengan listrik akan membuat beras menjadi matang, sehingga dapat berubah menjadi nasi yang dapat adalah salah satu alat rumah tangga yang mampu menghasilkan perubahan energi, dari energi listrik menjadi energi panas. Umumnya, oven digunakan untuk membuat kue atau memasak makanan lainnya. alat ini memiliki ruang tertutup yang mampu menghasilkan panas, sehingga dapat membuat bahan makanan menjadi merupakan salah satu alat yang umumnya digunakan untuk memperbaiki berbagai perkakas. Solder termasuk alat yang berasal dari energi listrik yang dapat berubah menjadi energi panas. Perubahan energi tersebut dapat dimanfaatkan untuk menyambungkan serangkaian komponen peralatan perubahan energi listrik menjadi energi panas sangatlah banyak di dalam kehidupan ini. Namun, alangkah lebih bijak jika kita dapat memanfaatkan energi listrik dengan bijak dan tidak konsumtif untuk meminimalisir terjadinya kelangkaan suatu hari nanti. Dengankata lain, isolator merupakan penghambat aliran listrik dan penghambat panas. Dalam sebuah jurnal oleh Nurhening Yuniarti dan A.N. Afandi dari UNY dan UM disebutkan pula bahwa isolator dalam tenaga listrik adalah salah satu peralatan listrik yang fungsinya adalah untuk memisahkan dua buah penghantar atau lebih secara elektris. Resistansi atau hambatan listrik merupakan salah satu komponen penting dalam sebuah rangkaian elektronika. Untuk itu, kita akan bahas tuntas terkait dengan resistansi mulai dari pengertian, jenis, rumus, nila, persamaan, hingga simbol dari resistansi. Pastikan Anda memahami materi kali ini dengan membaca sampai tuntas. Resistansi adalah hambatan listrik atau indikator yang merupakan gaya melawan aliran arus. Itulah sedikit definisi mengenai resistansi yang paling umum. Untuk pembahasan selengkapnya, mari kita simak mulai dari jenis-jenis resistansi, rumus, hingga nilai-nilai resistansi berikut ini. Jenis – jenis Resistansi Jenis – jenis Resistansi Secara sederhana, komponen yang satu ini bekerja ketika elektron berbeda dengan dua terminal. Maka, listrik akan mulai mengalir ke tempat yang posisinya lebih rendah. Intinya, jika hambatan besar, maka arus akan menjadi semakin kecil. Begitu juga sebaliknya saat hambatan nilainya lebih kecil, maka arus akan semakin besar. Ada 3 jenis resistansi, diantaranya adalah Resistansi Penghantar. Resistansi Sambungan. Resistansi Suhu. Adapun penjelasan lebih detail dari masing-masing jenis hambatan listrik diatas dapat Anda simak dibawah ini. 1. Resistansi Penghantar Terdapat 3 jenis resistansi berdasarkan penghantarnya, diantara lain yaitu – Konduktor Konduktor adalah benda yang bersifat sebagai penghantar listrik yang baik karena mempunyai resisitivitas yang rendah. contohnya adalah tembaga, emas, besi, perak dll. – Isolator Isolator adalah benda yang memiliki sifat tidak dapat mengantarkan listrik dikarenakan memiliki nila risistivitas yang tinggi. Contohnya yakni plastik, karet, kertas, dan kaca. – Semikonduktor Semikonduktor adalah benda yang memiliki kedua sifat dari konduktor dan isolator. Contohnya yaitu silikon dan germanium. 2. Resistansi Sambungan Resistansi Sambungan adalah hambatan yang terjadi karena penyambungan antar komponen dalam sebuah rangkaian. Contohnya seperti sambungan antara kabel dan terminal baterai yang longgar sehingga menyebabkan panas pada suatu rangkaian. 3. Resistansi Suhu Resistansi suhu adalah hambatan listrik yang dapat dipengaruhi oleh naik turunnya suhu. Jadi, apabila suhu naik maka nilai hambatan juga ikut naik. Contoh dari jenis resistansi ini adalah pada saat kita mengecas HP, semakin bertambahnya baterai maka akan terjadi penurunan kecepatan dalam pengisian akibat terjadinya overheat pada suhu HP tersebut. Rumus Resistansi Rumus Resistansi Rumus resistansi sama dengan tegangan atau arus yang masuk. Sering juga disebut dengan istilah Hukum Ohm. Maksudnya yakni tegangan bertahan konstan maka arus penyebut meningkat dan menyebabkan nilai resistansi berkurang. Sedangkan saat arus turun maka dampaknya yakni nilai resistansi akan meningkat. Sederhananya yakni saat nilai hambatan listrik rendah maka arusnya akan semakin besar. Dan ketika hambatan listrik tinggi maka arus akan menjadi lebih kecil. Dasarnya yakni resistansi listrik mengaliri jenis dan suhu zat. Alat untuk mengukur resistansi atau hambatan listrik bernama multimeter digital. Arus, tegangan, parameter, dan sejenisnya merupakan objek yang bisa diukur. Ada beberapa macam cara menggunakan multimeter digital. Berikut ini tahapan yang bisa Anda coba praktikkan. Nyalakan instrumen lalu atur menjadi mode resistansi . Nilai resistansi target pengukuran dengan rentang secukupnya. Steker kabel tes merah pilih terminal . Sedangkan untuk steker kabel tes hitam untuk terminal COM. Kedua ujung resistor digunakan untuk menempatkan kabel uji dalam kotak. Layar LCD instrumen akan mulai menampilkan hasil pengukuran. Kabel uji resistor harus dilepas saat selesai mengukur. Alat tersebut tidak hanya digunakan untuk proses ukur, namun juga bisa mengoreksi suhu meter resistansi. Nilai Resistansi Nilai resistansi ini sendiri umumnya menggunakan satuan Ohm/Omega . Terutama yang difungsikan untuk mengukur rangkaian listrik. Nilai-nilai tersebut terangkum dalam penghantar atau konduktor. Tujuannya yakni untuk menghambat arus listrik serta mengendalikan besaran hambatan listrik. Sebagai tambahan informasi, berikut ini beberapa contoh material dan kondisi yang direkomendasikan dijadikan sebagai media penghantar listrik Material tembaga, yakni karena nilai resistansinya terbilang lebih rendah. Suhu, yakni nilai resistansi meningkat untuk membuat suhu meningkat. Panjang penghantar ini nantinya bisa digunakan untuk mengetahui nilai resistansi yang semakin tinggi. Luas penampang, yakni saat diameter semakin kecil maka nilai resistansi semakin tinggi. Untuk komponen yang difungsikan sebagai penghambat arus listrik sendiri disebut sebagai resistor. Dimana fungsi utama dari komponen ini yakni untuk melakukan proses pengurangan atau hambatan arus listrik dengan tujuan menurunkan level tegangan listrik. Sedangkan satuan resistansi yang digunakan yaitu Kilo Ohm, Mega Ohm, dan Giga Ohm. Satuan ini tentu menggunakan prefix atau SI standar internasional. Hitungannya adalah sebagai berikut Satuan Ohm 1 Giga Ohm Ohm 109 Ohm 1 Mega Ohm Ohm 106 Ohm 1 Kilo Ohm Ohm 103 Ohm Persamaan Resistansi Persamaan Resistansi Sebenarnya teori mengenai persamaan resistansi sudah ditemukan oleh George Simon Ohm sejak tahun 1825. Resistansi atau hambatan listrik dengan tegangan/voltage dan arus listrik/current nantinya dapat dijabarkan dengan Hukum Ohm. Berikut adalah rumus mencari persamaan resistensi menggunakan Hukum Ohm V = I x R atau R = V/I atau I = V/R Keterangan V voltage dalam satuan volt adalah tegangan listrik I current dalam satuan ampere adalah arus listrik R resistance dalam satuan Ohm adalah hambatan listrik Artinya, 1 ampere arus listrik mengalir sebuah komponen dengan tegangan 1 volt – resistansinya adalah 1 Ohm. Analogi yang lainnya yaitu rangkaian diberikan tegangan 24 volte dengan arus listrik 0,5 A. Hasilnya, 48 Ohm. Anda bisa menghitungnya menggunakan rumus persamaan resistansi di atas. Simbol Resistansi Simbol Resistansi Untuk simbol resistansi adalah huruf R resistance atau komponen resistor. Nah, simbol ini menentukan rumus masing-masing nilai, rumus dan persamaan resistansi. Berikut ini beberapa jenis symbol resistensi beserta rumus penghitungannya 1. Resistansi dalam hukum Ohm Resistansi dalam hukum Ohm yakni tingkat kuat arus yang masuk ke dalam dua titik akan berbanding lurus secara potensial. Kondisi ini digambarkan dalam rumus berikut I = V/R 2. Resistansi dalam konduktansi Resistansi dan hambatan arus listrik akan berbanding terbalik dengan hantaran atau konduktansi yang ada. Dimana besaran nilainya akan menghambat kuat arus listrik yang masuk. Sedangkan pengertian dasar mengenai kondutansi yakni besaran nilai yang mampu dijadikan sebagai penghantar arus listrik. Lalu untuk satuan konduktansi dalam S Siemens atau dengan simbol G. Jika dituliskan ke dalam rumus konduktansi adalah seperti berikut R = V/I atau G = I/V menjadi G = 1/R 3. Resistansi dalam kawat Menurut fisikawan Claude Pouillet dari Prancis mengenai resistansi dalam kawat. Nilai hambatan listrik yang masuk ternyata juga bisa ditentukan. Terutama oleh jenis kawat P, panjang kawat l dan luas penampang kawat A. Artinya, hambatan listrik ini akan berbanding lurus dengan panjang kawat yang tersedia. Sedangkan, hambatan akan berbanding terbalik dengan luas penampang kawat. Anda bisa menghitungnya menggunakan rumus hambatan kawat sebagai berikut R = P l/AKeterangan P m = Hambatan jenis kawat l m = Panjang kawat A m2 = Luas penampang kawat Kesimpulan dari rumus di atas yakni jika kawat yang digunakan lebih panjang diameternya maka tingkat hambatan listriknya juga akan lebih besar. Bisa diartikan kawat dengan luas penampang yang lebih besar maka akan membuat hambatan arus listriknya mengecil. 4. Resistansi konduktor Resistansi konduktor adalah ketika hambatan semakin besar, maka konduktor semakin panjang. Resistansi ini tergantung panjang, jenis, dan luas penampang. Sedangkan, luas penampang meningkat, maka resistansi berkurang atau bisa saja sirkulasi arus meningkat. Anda bisa menghitung masalah hambatan listrik menggunakan rumus persamaan resistansi tersebut. Resistansi dan Resistivitas Resistansi dan Resistivitas Resistansi dan resistivitas memiliki sedikit perbedaan. Karena resistivitas adalah hambatan konduktor dalam satuan panjang dan satuan penampang. Resistivitas juga bisa saja berbeda. Hal ini karena panjang dan ketebalan konduktornya sama. Adapun perbedaan antara resistansi dan resistivitas sebagai adalah sebagai berikut Resistansi Resistivitas Resistansi merupakan ukuran kapasitas material. Sifatnya, menahan elektron mengalir. Resistivitas merupakan ukuran material di bawah dimensi. Simbol resistansi huruf R. Simbol resistivitas huruf Yunani ƿ rho. Resistansi dengan satuan Ohm SI. Resistivitas dengan satuan ohm-meter. Pengaruh resistansi yaitu panjang, suhu material dan luas. Pengaruh resistivitas yaitu naik/turunnya suhu. Perbedaan antara resistansi dan resistivitas juga akan berbeda saat menerapkannya pada alat elektronik. Misalnya seperti resistansi hanya diterapkan pada alat pemanas. Kesimpulan Demikian pembahasan mengenai resistansi lengkap dengan rumus dan nilai-nilainya. Kesimpulannya, Anda bisa menghitung besaran hambatan listrik pada elektronik menggunakan rumus tersebut, ya? Semoga pembahasan di atas sudah cukup membantu Anda dalam memahami apa itu resistensi dan cara kerjanya.